
Mathematics and Computers in Simulation 62 (2003) 53–63

Rasetti–Regge Dirac bracket formulation of Lagrangian
fluid dynamics of vortex filaments�
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Abstract

We review the Rasetti–Regge Dirac bracket (RRDB) for determining the constrained Hamiltonian dynamics
of vortex filaments moving with an incompressible potential flow of superfluid helium-II in the Lagrangian fluid
picture. We compare the equations for Lagrangian vortex filaments with their corresponding Eulerian vorticity
dynamics in the examples of the Euler fluid, superfluid vortices, the local induction approximation (LIA), the
Rosenhead regularization and a new class of alternative regularized theories including the Euler-alpha model. The
RRDB formulation generalizes the Betchov–Da Rios equation for the transverse self-induction velocity of a vortex
filament from LIA to the case of an incompressible fluid whose energy may expressed as an arbitrary functional
of spatial vorticity. We also discuss the relation of RRDB to the Marsden–Weinstein bracket for vortex filaments
and its implications under the Hasimoto transformation for physically meaningful nonlocal nonlinear Schrödinger
(NLNLS) equations.
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1. Rasetti–Regge Dirac bracket (RRDB)

In the context of helium-II superfluid vortex filaments[15], Rasetti and Regge used Dirac’s method to
introduce a constrained Poisson bracket for the Hamiltonian dynamics in the Lagrangian fluid description
of a massless vortex filament moving without slipping in an incompressible potential flow.

The spatial position of such a vortex filament is denoted as

x = R(a, t) : R3 × R → R3
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wherea ∈ R3 is a Lagrangian coordinate on the filament moving with the fluid andt is time. A vector
tangent to the filament is defined in terms of its vorticity by the Cauchy relation

Rs(a, t) = dR

ds
= ω0(a) · ∂

∂a
R = Jω(R(a, t), t), with J = det

(
∂R

∂a

)
.

Here,ω0(a) is the vorticity at the initial position. This relation also provides the geometrical rule for
transforming between Lagrangian and Eulerian descriptions of the vortex filament. Thus, the differential
operator

d

ds
= ω0(a) · ∂

∂a
= Jω(R) · ∂

∂R
= Rs · ∂

∂R

is the natural tangential derivative for the vortex filament in either the Lagrangian, or the Eulerian picture.
In this notation, the Rasetti–Regge Dirac bracket (RRDB) is expressed in the Lagrangian fluid descrip-

tion as

{F,H }(R, χ) =
∫

d3a

[
1

R2
s

Rs · δF
δR

× δH

δR
− δF

δR
·
(
χ

R4
s

d

ds
+ d

ds

χ

R4
s

)
δH

δR

−Rs

R2
s

· δF
δR

(
χ

R2
s

d

ds
+ d

ds

χ

R2
s

)
Rs

R2
s

· δH
δR

+
(

Rs · δF
δR

)
δH

δχ
− δF

δχ

(
Rs · δH

δR

)]
,

(1)

in which Rs = |Rs| = R̂s · Rs denotes the magnitude of the tangent vector. The variableχ is the
constraint degree of freedom introduced in[15] that represents longitudinal motion along the filament.
The conditionχ = 0 is a first class constraint that eliminates this longitudinal dynamics in the RRDB. The
Rasetti–Regge Dirac bracket yields the following Hamiltonian equations of motion for a vortex filament:

Ṙ(a, t) = {R, H } = − 1

R2
s

Rs × δH

δR
−
(
χ

R4
s

d

ds
+ d

ds

χ

R4
s

)
δH

δR

−Rs

R2
s

(
χ

R2
s

d

ds
+ d

ds

χ

R2
s

)(
Rs

R2
s

· δH
δR

)
+ Rs

δH

δχ
,

χ̇(a, t) = {χ,H } = −Rs · δH
δR
.

(2)

If Rs · δH/δR = 0 thenχ is dynamically preserved and one may safely impose the constraintχ =
0 as an initial condition, thereby simplifying the first equation forR considerably. The dependence
of H on χ introduces an immaterial drift velocity along the vortex filament. This component of the
velocity is equivalent to a time dependent re-parameterizarion of arc-length, which has no physical
consequence. However, a nontrivial evolution inχ would disallow imposing the constraintχ = 0.
Dynamical preservation of the constraintχ = 0 requires choosing Hamiltonians that satisfyRs·δH/δR =
0 and, thus, Poisson-commute withχ under the RRDB. Such Hamiltonians are called “gauge invariant”
in [15].
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2. Examples of RRDB motions

2.1. Hamiltonians for vortex filament dynamics

If we choose Hamiltonians of the formH = ∫
h(Rs)d3a depending only on the magnitude of the

tangent vector, then their variations may be computed from

δH =
∫
h′(Rs)δRs d3a =

∫
h′(Rs)R̂s · δRs d3a = −

∫
d

ds
(h′(Rs)R̂s) · δR d3a.

Thus,

δH

δR
= − d

ds

δH

δRs
= − d

ds
(h′(Rs)R̂s).

(
Recall thatRs · δH

δR
�= 0 impliesχ̇ �= 0.

)

2.1.1. First example—longitudinal flow
We choose the HamiltonianH = ∫

h(Rs) d
3a, with h(Rs) = (1/2)R2

s. In this case,

δH

δR
= − d

ds
(h′(Rs)R̂s) = −Rss, for h(Rs) = 1

2R
2
s,

and the RRDB equations of vortex motion (2) specialize to

Ṙ(a, t) = 1

R2
s

Rs × Rss+
(
χ

R4
s

d

ds
+ d

ds

χ

R4
s

)
Rss+ Rs

R2
s

(
χ

R4
s

d

ds
+ d

ds

χ

R2
s

)(
Rs

R2
s

· Rss

)
,

χ̇(a, t) = Rs · Rss �= 0.

The third-orderRsssterm in theṘ equation is typical for vortex filament motion with longitudinal flow.
Again note that this longitudinal flow involves the co-evolution ofχ .

2.1.2. Second example—Betchov–Da Rios equation
We now choose the HamiltonianH = ∫

h(Rs)d3a, with h(Rs) = Rs, itself. Thus,

δH

δR
= − d

ds
(h′(Rs)R̂s) = − d

ds
R̂s, for h(Rs) = Rs.

In this case,R̂s = t , wheret is the unit tangent vector along the vortex filament, whose properties as a
space curve are defined via the Serret–Frenet equations:

R̂s = t,
d

ds
t = κn, d

ds
n = τn − κt, d

ds
b = −τn.

Here,n is the unit vector normal to the filament,b = t × n is its unit binomial vector,κ is the curvature
of the filament andτ is its torsion.

Hence, we find

χ̇ = −Rs · δH
δR

= Rs t · d

ds
t = 0 since |t |2 = 1.
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The RRDB vortex equation (Eq. (2)) in this case obtained forχ = 0 is

Ṙ(s, t) = − 1

R2
s

Rs × δH

δR
= 1

Rs
t × ts = 1

Rs
κb. (3)

After re-parameterizing the arc-length to absorbRs, asRs ds = d�, Eq. (3)describes self-induced mo-
tion of a vortex filament in thelocalized induction approximation(LIA), see, e.g.[14,22]. This is the
simplest of the Betchov–Da Rios equations, on which there is a great literature. See, e.g.[16,17,19,20]
for modern discussions and appreciative surveys of this literature. Hasimoto[3] showed that this vor-
tex filament equation in the LIA may be transformed to the integrable nonlinear Schrödinger equation,
thereby demonstrating the coherence of waves on vortices. It is of interest to investigate vortex filament
HamiltoniansH = ∫

h(Rs)d3a that produce more general Betchov–Da Rios equations via the RRDB.
See Uby et al.[23] for discussions of such extensions of the Betchov–Da Rios equations in filament
dynamics of plasmas and superconductors.

2.2. Hamiltonians for vorticity dynamics

We now choose Hamiltonians of the formH = ∫
h(ω)d3R = ∫

h(ω)J d3a, with h(ω) depending in a
general way on the Eulerian vorticityω(R). Using the Cauchy-theorem definitionω = J−lRs allows one
to transform these Hamiltonians into Lagrangian coordinates and compute their variations in the form
needed for the RRDB:

δH =
∫
δh

δω
· δω d3R +

∫
h(ω)δJ d3a =

∫ [
δh

δω
· d

ds
δR +

(
h(ω)− δh

δω
· ω
)
δJ

]
d3a

=
∫
δR ·

(
Rs × curlR

δh

δω
(R(a, t), t)

)
d3a.

In the last step, we used the identities

δJ = J tr

[(
∂R

∂a

)−1

·
(
∂δR

∂a

)]
= ∂

∂aA

(
J

(
∂R−1

∂a

)A
j

δRj

)
,

and integrated by parts, dropping boundary terms. In the general case, we writeδH/δω(R) as the variation
of H(ω) with respect to the Eulerian vorticity,evaluated on the filament. This yields the Lagrangian
relation

δH(ω)

δR
= Rs × curlR

δH

δω
(R(a, t), t) = t × t × ∂

∂s

δH

δω
(R(s, t)t) ≡ −P̂ ∂

∂s

∂H

δω
(R(s, t), t).

Here, we have used the chain-rule identity

curlR
δH

δω
(R(s)) = t(t · ∇R)× δH

δω
(R(s)) = t × 1

Rs

∂

∂s

∂H

δω
(R(s)),

and introduced the operator̂P ≡ −t × t× which projects any vector onto the transverse plane normal to
the vortex filament at a given spatial point. Consequently,

χ̇ ≡ −Rs · δH
δR

= 0,
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and the variations inR of Eulerian vorticity functionalsH(ω) have no components along the vortex
filament. Hence,{χ , H(ω)} = 0 under RRDB for anyH(ω) and such vorticity Hamiltonians preserve the
constraintχ = 0.

The vorticity functionalsH(ω) thus comprise one class of the gauge-invariant dynamical variables that
were sought in[15]. The RRDB equation (Eq. (2)) in this case yields the following expression for the
induced velocity of a vortex filament:

Ṙ(s, t) = − 1

R2
s

Rs ×
(

Rs × curlR
δH

δω

)
= P̂ curlR

δH

δω
= 1

R2
s

Rs × ∂

∂s

δH

δω
(R(s, t), t). (4)

This form of the RRDB equation (Eq. (2)) generalizes the Betchov–Da Rios formula (3) for the transverse
induced velocity of a vortex filament to the case of an incompressible fluid whose energy functionalH(ω)
dependsarbitrarily on spatial vorticity. The remainder of this paper discusses the interpretation of the
generalized Betchov–Da Rios formula (4) in several applications.

2.2.1. RRDB implies the Lie–Poisson bracket for vorticity functionals
For two functionalsF(ω) andH(ω) that depend only on theEulerianvorticity, substituting the previous

mixed Eulerian and Lagrangian expression forδH/δR into the RRDB and evaluating atχ = 0 gives the
following Lie–Poisson bracket relation:

{F,H }(ω) =
∫

d3a
1

R2
s

Rs · δF
δR

× δH

δR
=
∫

d3a
1

R2
s

Rs ·
(

Rs × curlR
δF

δω

)
×
(

Rs × curlR
δH

δω

)

=
∫
(J d3a)ω · curlR

δF

δω
× curlR

δH

δω
=
∫

d3Rω(R) · curlR
δF

δω
(R)× curlR

δH

δω
(R),

(5)

and Eulerian vorticity dynamics

∂ω

∂t
= {ω,H } = −curl

(
ω × curl

δH

δω

)
. (6)

This Lie–Poisson bracket for Eulerian continuous vorticityω appears in[7] and has been discussed in the
literature many times since then. A version of it also appears in[24]. This Lie–Poisson bracket was also
discussed recently again by[8–10] from a viewpoint that is logically opposite to the present one, which
follows [15] in making the Lagrangian picture primary. As is well known, the reduction of a Poisson
bracket from the Lagrangian picture to the Eulerian picture is not an invertible procedure. See, e.g.[1,12]
for references to the literature and authoritative discussions of such reductions.

2.2.2. Helicity and knottedness
The helicityΛ(ω) = ∫

ω · curl−1ω d3x is a Casimir for the Lie–Poisson vorticity bracket (5). That
is, {ω,Λ} = 0 so that{H,Λ}(ω) = 0 and, hence, helicity is conserved for every vorticity Hamiltonian
H(ω). In terms of Lagrangian vortex filaments, the helicity is expressed as

Λ(R) =
∫
∂R

∂s
·
(

∂

∂R(s)
×
∫

1

4π |R(s)− R(s ′)|
∂R

∂s ′
ds ′
)

ds,
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and is interpreted as the total linkage number, or knottedness, of the vortex filament distribution. The helic-
ity does not Poisson-commute under RRDB with the Lagrangian vortex filament position parameterized
by R(s). Instead, by eitherEq. (2)or Eq. (4), one computes the Poisson bracket:

{R,Λ} = − 1

R2
s

Rs × δΛ

δR
= 2

R2
s

Rs × ∂

∂s

(
∂

∂R(s)
×
∫

1

4π |R(s)− R(s ′)|
∂R

∂s ′
ds ′
)
,

of helicity with the position of a vortex filament in free space. Hence, under RRDB the conserved
helicity Poisson-generates an infinitesimal transformation that shifts the vortex filament’s Lagrangian
position R(s) in the plane normal toRs at s, but preserves its Eulerian vorticity fieldω(x) at every
point. Conservation of helicityΛ by the Eulerian vorticity dynamics for any vorticity HamiltonianH(ω)
means that the corresponding motion of the Lagrangian vortex filament distribution must preserve its
total linkage number, or knottedness. This and other topological properties of vortex filament dynamics
are discussed and explained in[1], for example, and are surveyed recently in[18].

2.2.3. Euler equations
For the Euler equations, the vorticity Hamiltonian is

H(ω) = 1

2

∫
ω · (−∆)−1ω d3R.

The divergence-free Eulerian fluid velocity is given by the expressionu = curlR ψ with vector stream
functionψ = δH /δω = (−∆)−1ω in which the Laplacian operator is inverted using proper boundary
conditions. For a vortex filament in free space, one may also choose to transform the vector stream
function for the Euler fluid to the Lagrangian picture as

ψ(x) = δH

δω
= 1

4π

∫
ω(R)d3R

|x − R| = 1

4π

∫
Rsd3a

|x − R(a, t)| ,

with divψ = 0 so, that curlcurlψ = −∆ψ = ω in analogy to the classical electromagnetic theory of
currents. Then, the Hamiltonian for an Euler fluid in the Lagrangian representation is (cf.[15]):

H = 1

8π

∫
1

|R(a, t)− Q(a′, t)|
dR

ds
· dQ

ds ′
d3a d3a′,

where d/ds ′ = ω0(a
′) · ∂/∂a′ is the arc-length derivative in the primed Lagrangian coordinates. The

vectorsR andQ may refer to the positions of either different, or the same vortex filaments, although the
well-known singularity at|R − Q| = 0 for the Euler fluid requires special treatment.

2.2.4. Superfluid helium-II
If the vorticity Hamiltonian isH = ∫ |ω| d3R = ∫

ω̂ · ω d3R, then one finds the associated stream
functionψ = δH/δω = ω̂, whereω̂ is the vorticity unit vector. The corresponding filament velocity is
u = curlψ= curl ω̂ and the vorticity itself satisfies

∂ω

∂t
+ curl(ω × curl ω̂) = 0.

This equation is a special case in the Hall–Vinen–Bekarevich–Khalatnikov (HVBK) theory of superfluid
helium-II. See[2] for the classic discussion. The corresponding Hamiltonian for the superfluid vortex
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filament isH = ∫
Rs d3a treated above. This produces the Betchov–Da Rios equation (Eq. (3)) familiar

from LIA. A similar vorticity Hamiltonian is introduced by[15] in their discussion of superfluid helium-II.
Recently, Kuznetsovand and Ruban[8–10]also revisited this special case of the HVBK theory from the
viewpoint of Rasetti–Regge Dirac brackets. The theoretical basis for the Lie–Poisson bracket formulation
of the full HVBK theory is discussed in[5] and reviewed in[4].

2.3. Alternative regularized fluid models

2.3.1. The Euler-alpha model
The Euler-alpha model of incompressible fluid flow introduced in[6] is defined in terms of an auxiliary

quantityq = curlv that plays a role similar to vorticity in the Hamiltonian as

Hα = 1

2

∫
q · (−∆)−1(1 − α2∆)−1q d3R,

for a constant length-scale,α. The corresponding vector stream function is

ψα = δH

δq
= (−∆)−1(1 − α2∆)−1q,

and the divergence-free Euler-alpha fluid velocity is defined by

uα = curlψα = (1 − α2∆)−1v.

Thus, the Euler-alpha fluid velocityu�, is a smoothed version of the velocityv. The quantityq = curlv
plays the role of vorticity in the Cauchy relation. Thus, an Euler-alpha vortex filament moving with
velocity Ṙ(a, t) = uα(R, t) has tangent vector

Rs(a, t) = dR

ds
= q0(a) ·

∂

∂a
R = Jq(R(a, t), t), with J = det

(
∂R

∂a

)
.

The corresponding Hamiltonian for the Lagrangian motion of Euler-alpha vortex filament is given by

H = 1

2

∫
G(R(a, t)− Q(a′, t))

dR

ds
· dQ

ds ′
d3a d3a′, with

G(R − Q) = 1 − exp(−|R − Q|/α)
4π |R − Q| . (7)

This is the Green’s function in free space for the operator product(−∆)(1−α2∆) of the three-dimensional
Laplacian with the Helmholtz operator. Forr ≡ |R − Q|, the quantities

g(r) = 1

4πr
and h(r) = 1

4πα2

e−r/α

r

satisfy, respectively,

−∆g(r) = δ(r) and (1 − α2∆)h(r) = δ(r).
Consequently,G(r) in Eq. (7)is the Green’s function for the operator−∆(1−α2∆) This may be checked
by direct substitution ofg(r)−α2h(r) = (1−e−r/α)/(4π r). A Taylor expansion of the exponential shows
that this Green’s function is regular at|R − Q| = 0.
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The Biot–Savart law for the Euler-alpha model is, thus,uα = curlψα, with vector stream function:

ψα(x) = δH

δq
=
∫
G(|x − R|)q(R)d3R =

∫
G(|x − R(a, t)|)Rs d3a,

and Green’s functionG(r) = (1 − e−r/α)/(4π r) for free boundaries.

2.3.2. The Rosenhead regularization
In their paper, Rasetti and Regge[15] suggested another regularized kernel originally due to Rosenhead

[21]:

Gλ0(R − Q) = lim
λ→0

[
(|R − Q|2 + λ2)−1/2 + 2 ln

(
λ

λ0

)
δ(|R − Q|)

]
,

with a cut-off length-scaleλ0, interpreted as the vortex core size. Various other suggestions for this sort
of regularization have been made since Rasetti and Regge[15]. See, for example[22] and the last chapter
of [14] for insightful explanations, history going back to Lord Kelvin and current references to other
approaches for regularizing Euler vortex dynamics.

2.4. Dynamics of a single vortex filament

The vorticity HamiltoniansH(ω) for Euler’s equations, Euler-alpha equations and the Rosenhead
regularization may each be expressed in either the Eulerian, or the Lagrangian representation as a quadratic
convolution with a Green’s function kernel, namely

H = 1

2

∫
G(|x − y|)ω(x, t) · ω(y, t)d3x d3y = 1

2

∫
G(|R(a, t)− Q(a′, t)|) dR

ds
· dQ

ds ′
d3a d3a′.

As before, the vectorsR andQ may refer to the positions of either different, or the same vortex filaments.
For all these theories, the variational derivative is

δH

δω
=
∫
G(|x − y|)ω(y, t)d3y ≡ (G ∗ ω)(x, t),

for a vorticity distribution in the Eulerian representation, and1

δH

δω
(R(s, t)) =

∫
G(|R(s, t)− R(s ′, t)|) dR

ds ′
ds ′ ≡ (G ∗ Rs)(s, t), (8)

for a single vortex filament in the Lagrangian representation with arc-length parameters. The latter
expression implies the following RRDB dynamics usingEq. (2)with χ = 0 for vortex filaments whose
HamiltoniansH(ω) are expressible as quadratic convolutions with vorticity

Ṙ(s, t) = − 1

R2
s

Rs × δH

δR
= 1

R2
s

Rs × ∂

∂s
(G ∗ Rs). (9)

1 We may drop the transverse Lagrangian coordinates for a single line vortex.
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This is the nonlocal generalization of the classical Betchov–Da Rios formula (3) for the case of quadratic
vorticity Hamiltonians of the Eulerian (resp. Lagrangian) form:

H = 1

2

∫
ω · (G ∗ ω)d3x = 1

2

∫
Rs · (G ∗ Rs)ds. (10)

In the classical Betchov–Da Rios formula (3), the nonlocal expressionG ∗ Rs in Eq. (9) is replaced
by (twice) the local unit vectort = R̂s tangent to the vortex filament. Consequently,HBDR = ∫

Rs ds.
and the dynamics of the tangent vectorR, along a single vortex filament in this case recovers the Local
Induction Approximation, cf. the Betchov–Da Rios formula (Eq. (3)):

Ṙs = ∂

∂s

(
1

R2
s

Rs × ∂

∂s

(
δHBDR

δR

))
= ∂

∂s

(
1

Rs
t × ts

)
. (11)

This equation impliesRs · Ṙs = 0, so the LIA admits solutions with uniform strengthRs = Γ . In this
case, the LIA equation reduces to the Landau–Lifschitz equation for a continuum approximation of a
ferromagnetic Heisenberg spin chain, namely

Γ 2ṫ = t × tss. (12)

2.5. Relating RRDB to the Marsden–Weinstein bracket for vortex filaments

The Rasetti–Regge Dirac bracket (1) is expressed in vortex filament notation as

{F,H }(R) =
∫

1

R2
s

Rs · δF
δR

× δH

δR
ds. (13)

We shall re-parameterize the arc-length to absorbRs asRs ds = d�, and define new dynamical variables
by dZ = Rs dR, so thatZ� = Rs andZ� = Rs. After this invertible transformation, the RRDB for vortex
filaments (13) becomes

{F,H }(Z) =
∫

Z�

Z�
· δF
δZ

× δH

δZ
d�. (14)

This is the vortex filament bracket in[13], which is now seen to be equivalent to the RRDB under this
invertible change of variables, when acting in the space of vorticity functionals. The quadratic vorticity
Hamiltonians (10) transform as

H = 1

2

∫
ω · (G ∗ ω)d3x = 1

2

∫
Rs · (G ∗ Rs)ds = 1

2

∫
T · ((G ◦ R) ∗ T )d�, (15)

whereT (�) ≡ Z�/Z� is the unit tangent vector under the new parameterization and the convolution in
Eq. (8)transforms as

G ∗ Rs(s) =
∫
G(|R(Z(�))− R(Z(�′))|)T (�′)d�′ ≡ (G ◦ R) ∗ T (�). (16)

Consequently, for the quadratic vorticity Hamiltonians, we find

δH

δZ
= − ∂

∂�

δH

δT
= − ∂

∂�
((G ◦ R) ∗ T ), (17)
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and the Marsden–Weinstein bracket (14) transforms to

{F,H }(T ) =
∫

T · ∂
∂�

δF

δT
× ∂

∂�

δH

δT
d�. (18)

The corresponding vortex filament dynamics is given by

Ṫ = {T , H } = ∂

∂�

(
T × ∂

∂�

δH

δT

)
= ∂

∂�

(
T × ∂

∂�
((G ◦ R) ∗ T )

)
. (19)

Langer and Perline[11] discovered that the Hasimoto transformation which takes solutions of the
Landau–Lifschitz equation (Eq. (12)) to solutions of the nonlinear Schrödinger (NLS) equation is also a
Poisson map. This Poisson map transforms the Marsden–Weinstein bracket (14) to the fourth (noncanon-
ical) Poisson bracket for NLS. The application of the Hasimoto–Langer–Perline transformation to the
quadratic vorticity Hamiltonians inEq. (15)can be expected to produce physically meaningfulnonlocal
NLS equations for future study.

3. Conclusion

Many other geometrical properties (and other interesting approximations!) of fluid vortex dynamics
remain to be explored using the RRDB equation (Eq. (2)). There are still several fundamental open
problems. For example, in using the Cauchy definition of arc-length, one assumes the vortex filament
does not slip relative to the ambient fluid. Thus, the RRDB formulation leaves out the reactive forces that
are known to cause a vortex filament in helium-II to move relative toboth the superfluid and the normal
fluid components. This reactive force was recently given a Hamiltonian formulation in the Eulerian fluid
picture in[4]. Expressing the Dirac bracket formulation for this reactive slipping of a vortex filament
through its ambient fluid in the Lagrangian picture is still an open problem.
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